Robert Gütig (Max-Planck Institute for Experimental Medicine, Göttingen, Germany) | Spike-timing based neuronal information processing: applications to vision and speech
When |
Jan 17, 2012
from 05:15 PM to 06:45 PM |
---|---|
Where | Lecture Hall, Hansastr. 9a |
Contact Name | Ad Aertsen |
Add event to calendar |
vCal iCal |
Abstract
The timing of action potentials of sensory neurons contains substantial information about the eliciting stimuli. Although computational advantages of spike-timing-based neuronal codes have long been recognized, it is unclear whether and how neurons can learn to read out such representations. We propose a novel biologically plausible supervised synaptic learning rule, the tempotron, enabling neurons to efficiently learn a broad range of decision rules, even when information is embedded in the spatio-temporal structure of spike patterns and not in mean firing rates. We demonstrate the enhanced performance of the tempotron over the rate-based perceptron in reading out spike patterns from retinal ganglion cell populations.
Extending the tempotron to conductance-based voltage kinetics, we show that this model can subserve time-warp invariant processing of afferent spike patterns. Furthermore, we show that the conductance-based tempotron can learn to balance excitation and inhibition to match its integration time constant to the temporal scale of a given processing task. These mechanisms enable already small populations of model neurons to match the performance of state-of-the-art speech recognition systems on isolated word recognition tasks.